
Chapter 14: Wave Motion 
Thursday April 2nd  

Reading: up to page 234 in Ch. 14 

• Introduction to wave motion 
• Definitions 

• The wave equation 
• Energy in SHM 
• Energy in waves 
• Wave superposition 

• Interference 
• Examples, demonstrations and iclicker 

• Final Mini Exam next week on Thursday (April 9) 
• Will cover oscillations and waves (this week/next LONCAPA) 



Waves I - types of waves 
1.  Mechanical waves: water waves, sound waves, seismic waves. 
2.  Electromagnetic waves: radio waves, visible light, ultraviolet 

light, x-rays, gamma rays. 
3.  Matter waves: electrons, protons, neutrons, anti-protons, etc.. 

1.  These are the most familiar. We encounter them every day. The 
common feature of all mechanical waves is that they are 
governed entirely by Newton's laws, and can exist only within a 
material medium. 

2.  All electromagnetic waves travel through vacuum at the same 
speed c, the speed of light, where c = 299 792 458 m/s. 
Electromagnetic waves are governed by Maxwell's equations 
(PHY 2049). 

3.  Although one thinks of matter as being made up from particles, 
one can also describe these particles as waves. Matter waves are 
governed by the laws of quantum mechanics, or the Schrödinger 
and Dirac equations. 



Waves I - types of waves 
Transverse waves  
(2 polarizations) 

Longitudinal waves 



Waves I - wavelength and frequency 

Wavelength (consider wave at t = 0): 

  

y(x,0) = Asin kx = Asin k x + λ( )
= Asin kx + kλ( )

You can always add 2π to the phase of a 
wave without changing its displacement, 
i.e., 

  
kλ = 2π or k = 2π

λ
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Waves I - wavelength and frequency 

Wavelength (consider wave at t = 0): 

  
kλ = 2π or k = 2π

λ
We call k the angular wavenumber. 

The SI unit is radian per meter, or 
meter-1. 
This k is NOT the same as spring 
constant!!! 
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Waves I - wavelength and frequency 

Period and frequency (consider wave at    
x = 0): 

  

y(0,t) = Asin −ωt( ) = −Asinωt

= −Asinω t +T( )
Again, we can add 2π to the phase, 

  
ωT = 2π or T = 2π

ω
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Waves I - wavelength and frequency 

Period and frequency (consider wave at    
x = 0): 

  
ωT = 2π or T = 2π

ω
We call π the angular frequency. 
The SI unit is radian per second. 
The frequency f is defined as 1/T. 

  
f = 1

T
= ω

2π
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The speed of a traveling wave 
• A fixed point on a wave has a constant 
value of the phase (orange arrow), i.e., 

  kx −ωt = constant

  
⇒ k

dx
dt

−ω = 0 or
dx
dt

= v = ω
k

Or 

 
v = ω

k
= λ

T
= f λ
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The speed of a traveling wave 
• For a wave traveling in the opposite 
direction, we simply set time to run 
backwards, i.e., replace t with -t. 

  kx +ωt = constant

  
⇒ k

dx
dt

+ω = 0 or
dx
dt

= v = −ω
k

  y(x,t) = Asin kx +ωt( )
• So, general sinusoidal solution is: 

  y(x,t) = Asin kx ±ωt( )
• In fact, any function of the form 

  y(x,t) = A × f n kx ±ωt( )
is a solution. 
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Review - wavelength and frequency 

2k π
λ

= k is the angular wavenumber, 
λ is the wavelength.  
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πω = ω is the angular frequency. 
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v = ∓ω

k
= ∓ λ

T
= ∓ f λ
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Traveling waves on a stretched string 

µ is the string's linear density, or mass per unit length. 

• Tension FT  provides the restoring force (kg.m.s-2) in the string. 
Without tension, the wave could not propagate. 

• The mass per unit length µ (kg.m-1) determines the response of the 
string to the restoring force (tension), through Newton's 2nd law. 

• Look for combinations of FT and µ that give dimensions of speed 
(m.s-1). 

TFv
µ

=

FT FT Fnet a 
a 

a 

+ve curve +ve curve 

-ve curve 

Zero curve 



Traveling waves on a stretched string 

µ is the string's linear density, or mass per unit length. 

The Wave Equation 

FT FT Fnet a 
a 

a 

+ve curve +ve curve 

-ve curve 

Zero curve 

  
Fnet = FT

∂2 y
∂x2 × Δl

⎛
⎝⎜

⎞
⎠⎟
= µ × Δl( ) ∂

2 y
∂t2 = may

Δl 

mass 
transverse 
acceleration 

Dimensionless 
parameter 
proportional to 
curvature   

FT

∂2 y
∂x2 = µ ∂2 y

∂t2

2nd Order Partial  
Differential 
Equation 



The wave equation 

  

FT

µ
∂2 y
∂x2 = ∂2 y

∂t2

• General solution: 

  y(x,t) = Asin kx ±ωt( ) or y(x,t) = A × f n kx ±ωt( )

  
∂2 y
∂x2 = −k 2 y x,t( ) ∂2 y

∂t2 = −ω 2 y x,t( )

  
−

FT

µ
k 2 = −ω 2 or

ω 2

k 2 = v2 =
FT

µ
 
⇒ v =

FT

µ

v v 



Kinetic energy: dK = 1/2 dm vy
2   y(x,t) = Asin kx −ωt( )

  
vy =

∂y
∂t

= −ωAcos kx −ωt( )

  dK = 1
2 µdx( ) −ωA( )2

cos2(kx −ωt)

Divide both sides by dt, where dx/dt = vx 

  

dK
dt

= 1
2 µvxω

2A2 cos2(kx −ωt)

Energy in traveling waves 

Similar expression for 
elastic potential energy   

dU
dt

= 1
2 µvxω

2A2 cos2(kx −ωt)

  
Pavg = 2× 1

2 µvω 2A2 cos2(kx −ωt) = 2× 1
2 µvω 2A2 × 1

2 = 1
2 µvω 2A2

Energy is pumped in an oscillatory fashion down the string 
Note: I dropped the subscript on v since it represents the wave speed 

dm = µdx 

A 



The principle of superposition for waves 
• It often happens that waves travel simultaneously through the 
same region, e.g. 

Ø Radio waves from many broadcasters 
Ø Sound waves from many musical instruments 
Ø Different colored light from many locations from your TV 

2 2
2

2 2

y yv
x t

∂ ∂=
∂ ∂

• And have solutions:   y(x,t) = A × f n kx ±ωt( ) or Asin kx ±ωt( )

• This is a result of the principle of superposition, which applies to all 
harmonic waves, i.e., waves that obey the linear wave equation 

• Nature is such that all of these waves can exist without altering 
each others' motion 

• Their effects simply add 



The principle of superposition for waves 
• If two waves travel simultaneously along the same stretched string, 
the resultant displacement y' of the string is simply given by the 
summation 

  y' x,t( ) = y1 x,t( ) + y2 x,t( )
where y1 and y2 would have been the displacements had the waves 
traveled alone. 

Overlapping waves algebraically add to produce a resultant 
wave (or net wave). 

Overlapping waves do not in any way alter the travel of 
each other 

• This is the principle of superposition. 



Interference of waves 
• Suppose two sinusoidal waves with the same frequency and 
amplitude travel in the same direction along a string, such that 

  

y1 = Asin kx −ωt( )
y2 = Asin kx −ωt +φ( )

• The waves will add. 



Interference of waves 

Noise canceling  
headphones 



Interference of waves 
• Suppose two sinusoidal waves with the same frequency and 
amplitude travel in the same direction along a string, such that 

  

y1 = Asin kx −ωt( )
y2 = Asin kx −ωt +φ( )

• The waves will add. 

• If they are in phase (i.e. ϕ = 0), they combine to double the 
displacement of either wave acting alone. 

• If they are out of phase (i.e. ϕ = π), they combine to cancel 
everywhere, since sin(α) = -sin(α + π). 

• This phenomenon is called interference. 



Interference of waves 
• Mathematical proof: 

  

y1 = Asin kx −ωt( )
y2 = Asin kx −ωt +φ( )

  

y' x,t( ) = y1 x,t( ) + y2 x,t( )
= Asin kx −ωt( ) + Asin kx −ωt +φ( )

Then: 

 sinα + sinβ = 2cos 1
2 α − β( )sin 1

2 α + β( )But: 

  y' x,t( ) = 2Acos 1
2φ⎡⎣ ⎤⎦sin kx −ωt + 1

2φ( )So: 

Amplitude Wave part 

Phase 
shift 



Interference of waves 

  y' x,t( ) = 2Acos 1
2φ⎡⎣ ⎤⎦sin kx −ωt + 1

2φ( )
If two sinusoidal waves of the same amplitude and 
frequency travel in the same direction along a stretched 
string, they interfere to produce a resultant sinusoidal 
wave traveling in the same direction. 

• If ϕ  = 0, the waves interfere constructively, cos½ϕ = 1 and the wave 
amplitude is 2A. 

• If ϕ = π, the waves interfere destructively, cos(π/2) = 0 and the 
wave amplitude is 0, i.e., no wave at all. 

• All other cases are intermediate between an amplitude of 0 and 2A. 
• Note that the phase of the resultant wave also depends on the 
phase difference. 

Adding waves as vectors (phasors) described by amplitude and phase 



Wave interference - spatial 


